Abstract
Nonrelativistic Schrödinger operators are perturbations of the negative Laplacian and the connection with stochastic processes (and Brownian motion in particular) is well known and usually goes under the name of Feynman and Kac. We present a similar connection between a class of relativistic Schrödinger operators and a class of processes with stationary independent increments. In particular, we investigate the decay of the eigenfunctions of these operators and we show that not only exponential decay but also polynomial decay can occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.