Abstract

It is shown that an outgoing null radiation field in the outer space of a Kerr-Newman black hole is darkened by the rotation of the black hole. This rotational darkening is calculated for a spheroid emitting null radiation normally to its surface, yielding the von Zeipel-like effectthat the equatorial region is darkened more strongly than the polar regions.This effect is not confined to the case of black holes but is also observable for relativistically rotating fluid spheroids such as atmospheres of pulsars or neutron stars. Moreover, application to Hawking radiation suggests that the black hole cannot be viewed as a classical black body but that the Hawking radiationis a global geometric effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.