Abstract

Radiatively driven transfer flow perpendicular to a luminous disk is examined in the relativistic regime of $(v/c)^2$, while taking into account the gravity of the central object. The flow is assumed to be vertical, and the gas pressure as well as the magnetic field are ignored. Using a velocity-dependent variable Eddington factor, we can solve the rigorous equations of the relativistic radiative flow accelerated up to relativistic speeds. For sufficiently luminous cases, the flow resembles the case without gravity. For less-luminous or small initial radius cases, however, the flow velocity decreases due to gravity. Application to a supercritical accretion disk with mass loss is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.