Abstract

We construct for a boson field in two-dimensional space-time with polynomial or exponential interactions and without cut-offs, the positive temperature state or the Gibbs state at temperature 1/β. We prove that at positive temperatures i.e. β<∞, there is no phase transitions and the thermodynamic limit exists and is unique for all interactions. It turns out that the Schwinger functions for the Gibbs state at temperature 1/β is after interchange of space and time equal to the Schwinger functions for the vacuum or temperature zero state for the field in a periodic box of length β, and the lowest eigenvalue for the energy of the field in a periodic box is simply related to the pressure in the Gibbs state at temperature 1/β.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.