Abstract
We propose a new relativistic treatment in the quantum Monte Carlo (QMC) technique using the zeroth-order regular approximation (ZORA) Hamiltonian. The novel ZORA local energy is derived, and its availability is examined with some variational Monte Carlo calculations. We optimize the wave functions variationally and evaluate the relativistic and correlation effects simultaneously. It is shown that our ZORA-QMC method with Jastrow-Slater wave functions can recover not only relativistic effects but also almost the same amount of electron correlations as the nonrelativistic QMC method can by evaluating the ionization potentials of the first row atoms, Li-Ne.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.