Abstract

We propose a model of communication employing two harmonic oscillator detectors interacting through a scalar field in a background Minkowski spacetime. In this way, the scalar field plays the role of a quantum channel, namely a Bosonic Gaussian channel. The classical and quantum capacities of the communication channel are found, assuming that the detectors' spatial dimensions are negligible compared to their distance. In particular, we study the evolution in time of the classical capacity after the detectors-field interaction is switched on for various detectors' frequencies and coupling strengths with the field. As a result, we find a finite value of these parameters optimizing the communication of classical messages. Instead, a reliable communication of quantum messages turns out to be always inhibited.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call