Abstract
Since Bohmian mechanics is explicitly nonlocal, it is widely believed that it is very hard, if not impossible, to make Bohmian mechanics compatible with relativistic quantum field theory (QFT). I explain, in simple terms, that it is not hard at all to construct a Bohmian theory that lacks Lorentz covariance, but makes the same measurable predictions as relativistic QFT. All one has to do is to construct a Bohmian theory that makes the same measurable predictions as QFT in one Lorentz frame, because then standard relativistic QFT itself guarantees that those predictions are Lorentz invariant. I first explain this in general terms, then I describe a simple Bohmian model that makes the same measurable predictions as the Standard Model of elementary particles, after which I give some hints towards a more fundamental theory beyond standard model. Finally, I present a short story telling how my views of fundamental physics in general, and of Bohmian mechanics in particular, evolved over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.