Abstract

ABSTRACT Accreting neutron stars (NS) can exhibit high frequency modulations in their lightcurves during thermonuclear X-ray bursts, known as burst oscillations. These frequencies can be offset from the NS spin frequency by several Hz (where known independently) and can drift by 1–3 Hz. One plausible explanation is that a wave is present in the bursting ocean, the rotating frame frequency of which is the offset. The frequency of the wave should decrease (in the rotating frame) as the burst cools hence explaining the drift. A strong candidate is a buoyant r-mode. To date, models that calculated the frequency of this mode taking into account the radial structure neglected relativistic effects and predicted rotating frame frequencies of ∼4 Hz and frequency drifts of >5 Hz; too large to be consistent with observations. We present a calculation that includes frame-dragging and gravitational redshift that reduces the rotating frame frequency by up to $30 \, {\rm per\, cent}$ and frequency drift by up to $20 \, {\rm per\, cent}$. Updating previous models for the ocean cooling in the aftermath of the burst to a model more representative of detailed calculations of thermonuclear X-ray bursts reduces the frequency of the mode still further. This model, combined with relativistic effects, can reduce the rotating frequency of the mode to ∼2 Hz and frequency drift to ∼2 Hz, which is closer to the observed values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.