Abstract

An extended set of binary neutron star (NS) merger simulations is performed with an approximative treatment of general relativity to systematically investigate the influence of the nuclear equation of state (EoS), the NS masses, and the NS spin states prior to merging. The general relativistic hydrodynamics simulations are based on a conformally flat approximation to the Einstein equations and a Smoothed Particle Hydrodynamics code for the gas treatment. We employ the two non-zero temperature EoSs of Shen et al. (1998a, Nucl. Phys. A, 637, 435; 1998b, Prog. Theor. Phys., 100, 1013) and Lattimer & Swesty (1991, Nucl. Phys. A, 535, 331), which represent a “harder” and a “softer” behavior, respectively, with characteristic differences in the incompressibility at supernuclear densities and in the maximum mass of nonrotating, cold neutron stars. In addition, we use the cold EoS of Akmal et al. (1998, Phys. Rev. C, 58, 1804) with a simple ideal-gas-like extension according to Shibata & Taniguchi (2006, Phys. Rev. D, 73, 064027), in order to compare with their results, and an ideal-gas EoS with parameters fitted to the supernuclear part of the Shen-EoS. We estimate the mass sitting in a dilute “torus” around the future black hole (BH) by requiring the specific angular momentum of the torus matter to be larger than the angular momentum of the ISCO around a Kerr BH with the mass and spin parameter of the compact central remnant. The dynamics and outcome of the models is found to depend strongly on the EoS and on the binary parameters. Larger torus masses are found for asymmetric systems (up to ~ for a mass ratio of 0.55), for large initial NSs, and for a NS spin state which corresponds to a larger total angular momentum. We find that the postmerger remnant collapses either immediately or after a short time when employing the soft EoS of Lattimer& Swesty, whereas no sign of post-merging collapse is found within tens of dynamical timescales for all other EoSs used. The typical temperatures in the torus are found to be about MeV depending on the strength of the shear motion at the collision interface between the NSs and thus depending on the initial NS spins. About of NS matter become gravitationally unbound during or right after the merging process. This matter consists of a hot/high-entropy component from the collision interface and (only in case of asymmetric systems) of a cool/low-entropy component from the spiral arm tips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.