Abstract
We show how a relativistic Langevin equation can be derived from a Lorentz-covariant version of the Caldeira–Leggett particle-bath Lagrangian. In one of its limits, we identify the obtained equation with the Langevin equation used in contemporary extensions of statistical mechanics to the near-light-speed motion of a tagged particle in non-relativistic dissipative fluids. The proposed framework provides a more rigorous and first-principles form of the weakly-relativistic and partially-relativistic Langevin equations often quoted or postulated as ansatz in previous works. We then refine the aforementioned results to obtain a generalized Langevin equation valid for the case of both fully-relativistic particle and bath, using an analytical approximation obtained from numerics where the Fourier modes of the bath are systematically replaced with covariant plane-wave forms with a length-scale relativistic correction that depends on the space-time trajectory in a parabolic way. A new relativistic force term appears in this fully-relativistic limit, which has been derived here for the first time. We discuss the implications of the apparent breaking of space-time translation and parity invariance, showing that these effects are not necessarily in contradiction with the assumptions of statistical mechanics. The intrinsically non-Markovian character of the fully relativistic generalised Langevin equation derived here, and of the associated fluctuation–dissipation theorem, is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.