Abstract

We present a model of the radio emission from synchrotron self-absorbed sources, including the effects of induced Compton scattering by the relativistic electrons in the source. Order of magnitude estimates show that stimulated scattering becomes the dominant absorption process when (kT(sub B)/m(sub e) c(exp 2))Tau(sub T) greater than or approximately 1.0. Numerical simulations demonstrate that relativistic induced Compton scattering limits the brightness temperature of a self-absorbed synchroton sources to T(sub B) less than or approximately 2 x 10(exp 11) nu(exp -1/p + 3) (sub zero, 9) gamma(exp p + 2/p + 5) (sub min) K, where gamma(sub min) is the low-energy cutoff to the relativistic electron distribution with a power-law index of p. It can also significantly flatten the radio spectrum. The radio spectrum of the core of 3C 279 is well matched by a model in which stimulated scattering is important, and the additional constraint T(sub B) less than 2 x 10(exp 11)K may be important to the interpretation of the broadband spectra in variable extragalactic compact radio sources. Stimulated scattering reduces the amplitude of the radio frequency variability relative to the X-ray variability, an effect which can be detected by multiwavelength variability studies. Data for a sample of resolved compact radio cores indicate that it is inconsistent to neglect induced Compton scattering when inferring the physical parameters of the sources. The necessary generalizations to the standard synchrotron self-Compton theory are p resented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call