Abstract

We investigate structures of hybrid stars, which feature quark core surrounded by a hadronic matter mantle, with super-strong toroidal magnetic fields in full general relativity. Modeling the equation of state (EOS) with a first order transition by bridging the MIT bag model for the description of quark matter and the nuclear EOS by Shen et al., we numerically construct thousands of the equilibrium configurations to study the effects of the phase transition. It is found that the appearance of the quark phase can affect distributions of the magnetic fields inside the hybrid stars, making the maximum field strength about up to 30 % larger than for the normal neutron stars. Using the equilibrium configurations, we explore the possible evolutionary paths to the formation of hybrid stars due to the spin-down of magnetized rotating neutron stars. We find that the energy release by the phase transition to the hybrid stars is quite large ($\la 10^{52} \rm erg$) even for super strongly magnetized compact stars. Our results suggest that the strong gravitational-wave emission and the sudden spin-up signature could be observable signals of the QCD phase transition, possibly for a source out to Megaparsec distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.