Abstract
Relativistic quantum mechanics of free fermions in the presence of the spiral dislocation of space–time with a distortion of a radial line into a spiral is studied within the Katanaev–Volovich geometric approach. The generalized Dirac equation in this background is constructed. Exact closed-form solutions are found by reducing the problem to that of a nonrelativistic two-dimensional [Formula: see text]-problem with a complex coupling constant. The influence of the defect parameter related to the spiral dislocation on these solutions is investigated. We also study the charge density of free fermions in the presence of such a spiral dislocation in space–time. Based on the Bender–Boettcher approach for non-Hermitian Hamiltonians we study, in addition, bound-state solutions of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.