Abstract
For experiments in plasma, nuclear, and high-energy physics, there is a strong demand for laser pulses exhibiting relativistic intensity, few-cycle pulse duration, and a very high contrast. Here we present a picosecond-pumped optical parametric chirped pulse amplification (OPCPA) system delivering pulses at 10 Hz repetition rate with the following key parameters: a compressed pulse duration of less than 7 fs (close to the Fourier limit), a contrast of better than 1011 starting from 1 ps before the main pulse, and a peak intensity of 6.9×1019 W/cm2 achieved with an off-axis parabolic mirror (f/1.6). In a proof-of-principle experiment, these pulses were used to generate high harmonics from solid surfaces with photon energies exceeding 55 eV. These results underline the promising perspectives of the reported system for relativistic light–matter interaction experiments and attosecond science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.