Abstract

The behavior of an electron spin interacting with a linearly polarized laser field is analyzed. In contrast to previous considerations of the problem, the initial state of the electron represents a localized wave packet, and a spatial envelope is introduced for the laser pulse, which allows one to take into account the finite size of both objects. Special attention is paid to ultrashort pulses possessing a high degree of unipolarity. Within a classical treatment (both nonrelativistic and relativistic), proportionality between the change of the electron spin projections and the electric field area of the pulse is clearly demonstrated. We also perform calculations of the electron spin dynamics according to the Dirac equation. Evolving the electron wave function in time, we compute the mean values of the spin operator in various forms. It is shown that the classical relativistic predictions are accurately reproduced when using the Foldy-Wouthuysen operator. The same results are obtained when using the Lorentz transformation and the nonrelativistic (Pauli) spin operator in the particle's rest frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.