Abstract

With the aim of finding out whether the predicted 7s27p1/2 ground-state electron configuration of Lr will have an effect on its reactivity, calculations of the adsorption properties of Lr(7s27p), its homologue Lu(6s25d), and the related p element Tl(6s26p) on the surface of Ta were performed using the relativistic periodic ADF BAND suite. The obtained adsorption energies, Eads(M), are in excellent agreement with the measured adsorption enthalpies of Lu and Tl, showing that Lr adsorbs on the surface of Ta similarly to Lu and much differently (215 kJ/mol more strongly) from Tl. An AO population analysis reveals that Lr interacts with the Ta surface preferentially via the 7s AO, with some participation of the 6d as well as 7p1/2 and 7p3/2 AOs. In contrast, Eads(Tl) is governed mainly by the 6p(Tl) AOs. Thus, the present investigations show that Lr should behave like Lu but not like the p element Tl on transition-metal surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.