Abstract

We present a theoretical study of relativistic effects on the linear polarization and angular distribution of x-ray radiation for the L () characteristic line following inner-shell single photoionization of Cd, Ba, Yb and Ra atoms. The analysis is performed based on the multi-configuration Dirac–Fock method and the density matrix theory. To explore the nature of these effects, calculations are carried out based on detailed analyses of the total and magnetic sublevel cross sections, the linear polarization, and the angular distribution of the x-ray photoemission, as well as on corresponding data calculated in the nonrelativistic limit. Our results show a significant difference in the above parameters compared to the nonrelativistic treatment, which is mainly due to the relativistic treatment of the target. Higher multipole contributions are also estimated, and found to be generally weaker. The importance of inclusion of the relativistic effects grows with increasing atomic number and the incoming photon energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call