Abstract

Using idealized models of the accretion disk we investigate the relativistic effects on the energy deposition rate via neutrino pair annihilation near the rotation axis of a Kerr black hole. Neutrinos are emitted from the accretion disk. The bending of neutrino trajectories and the redshift due to the disk rotation and gravitation are taken into consideration. The Kerr parameter, $a$, affects not only neutrinos' behavior but also the inner radius of the accretion disk. When the deposition energy is mainly contributed by the neutrinos coming from the central part, the redshift effect becomes dominant as $a$ becomes large and the energy deposition rate is reduced compared with that neglecting the relativistic effects. On the other hand, for small $a$ the bending effect gets dominant and makes energy increase by factor 2 compared with that neglecting the relativistic effects. For the disk with temperature gradient, the energy deposition rate for a small inner radius of the accretion disk is smaller than that estimated by neglecting the relativistic effects. The relativistic effects, especially for large $a$, play a negative role in avoiding the baryon contamination problem in gamma-ray bursts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.