Abstract

AbstractQuantum chemistry is an important tool for determining general molecular properties, although relativistic corrections are usually required for systems containing heavy and super heavy elements. Non‐relativistic along with relativistic two‐ and four‐component electronic structure calculations done with the CCSD‐T method and the new RPF‐4Z basis set have therefore been applied for determining inversion barriers, corresponding to the change from a pyramidal (C3v) ground‐state structure to the trigonal planar (D3h) transition state, TS, of group 15 hydrides, XH3 (X= N, P, As, Sb, and Bi). The ground‐state structure of the McH3 molecule, which contains the super heavy element Moscovium, is also predicted as pyramidal (C3v), with an atomization energy of 90.8 kcal mol−1. However, although non‐relativistic calculations still provided a D3h planar TS for McH3, four‐component relativistic calculations based on single‐reference wave functions are unable to elucidate the definitive TS geometry in this case. Hence, the results show that relativistic effects are crucial for this barrier determination in those hydrides containing Bi and Mc. Moreover, while the scalar relativistic effects predominate, increasing barrier heights by as much as 17.6 kcal mol−1 (32%) in BiH3, the spin‐orbit coupling cannot be disregarded in those hydrides containing the heaviest group 15 elements, decreasing the barrier by 2.5 kcal mol−1 (4.5%) in this same molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.