Abstract

Position and momentum information measures are evaluated for the ground state of the relativistic hydrogen-like atoms. Consequences of the fact that the radial momentum operator is not self-adjoint are explicitly studied, exhibiting fundamental shortcomings of the conventional uncertainty measures in terms of the radial position and momentum variances. The Shannon and Rényi entropies, the Fisher information measure, as well as several related information measures, are considered as viable alternatives. Detailed results on the onset of relativistic effects for low nuclear charges, and on the extreme relativistic limit, are presented. The relativistic position density decays exponentially at large r , but is singular at the origin. Correspondingly, the momentum density decays as an inverse power of p . Both features yield divergent Rényi entropies away from a finite vicinity of the Shannon entropy. While the position space information measures can be evaluated analytically for both the nonrelativistic and the relativistic hydrogen atom, this is not the case for the relativistic momentum space. Some of the results allow interesting insight into the significance of recently evaluated Dirac–Fock vs. Hartree–Fock complexity measures for many-electron neutral atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.