Abstract
Electrons and photons, when interacting via a nanostructure, produce a new way of imaging in space and time, termed photon-induced near field electron microscopy or PINEM [Barwick et al. Nature 2009, 462, 902]. The phenomenon was described by considering the evanescent field produced by the nanostructure, but quantification of the experimental results was achieved by solving the Schrödinger equation for the interaction of the three bodies. The question remained, is the nonrelativistic formulation sufficient for this description? Here, relativistic and nonrelativistic quantum mechanical formulations are compared for electron-photon interaction mediated by nanostructures, and it is shown that there is an exact equivalence for the two formulations. The nonrelativistic formulation was found to be valid in the relativistic regime when using in the former formulation the relativistically corrected velocity (and the corresponding values of momentum and energy). In the PINEM experiment, 200 keV electrons were utilized, giving the experimental (relativistically corrected) velocity to be 0.7c(v without relativistic correction is 0.885c). When this value (0.7c), together with those of the corresponding momentum (p(c) = mv) and energy (E(c) = (1/2)mv(2)), is used in the first order solution of the Schrödinger formulation, an exact equivalence is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.