Abstract
The comparison of coupled cluster with single and double excitations and with perturbative correction of triple excitations [CCSD(T)] ground state potential curves of mercury with rare gases (RG): HgHe and HgXe, at several levels of theory is presented. The scalar relativistic (REL) effects and spin-orbit coupling effects in the ground state potential curves of these weakly bounded dimers are considered. The CCSD(T) ground state potential curves at the level of the Dirac-Coulomb Hamiltonian (DCH) are compared with CCSD(T) curves at the level of 4-component spin-free modified DCH, the scalar 2nd order Douglas-Kroll-Hess (DKH2) and the nonrelativistic (NR-LL) (Lévy-Leblond) Hamiltonian. In addition, London-Drude formula and SCF interaction energy curves are employed in the analysis of different contributions of REL effects in dissociation energies of HgRG and Hg(2) dimers. Moreover, the large anharmonicity of the HgHe ground state potential curve is highlighted. The computationally less demanding scalar DKH2 Hamiltonian is employed to calculate the HgXe, Hg(2) , and Xe(2) all electron CCSD(T) ground state potential curves in highly augmented quadruple zeta basis sets. These potential curves are used to simulate the shear viscosity of mercury, xenon, and mercury-xenon (Hg:Xe) mixture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.