Abstract

Elastic scattering of electrons in the energy range 0-25 eV by mercury atoms is investigated by applying a perturbation method to the (nonrelativistic) Schrodinger equation. Relativistic correction to the potential is treated using two models: a Pauli approximation and a second-order Dirac potential. The nonrelativistic Hartree-Fock wavefunction is used to describe the target in the zeroth order approximation. Electron exchange is found to be important in the collision. The relativistic correction due to mass variation makes a significant contribution, in particular to p-wave scattering which is dominated by a low energy shape resonance. Phase shifts for s-, p-, d- and f-wave scattering are presented. An analytic expression for the momentum transfer cross section for relativistic scattering is obtained. The total cross section, momentum transfer cross section, differential cross section and spin polarization are calculated and compared with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.