Abstract

We derive the equations of motion of relativistic magnetohydrodynamics from the Boltzmann equation using the method of moments. We consider a locally electrically neutral system composed of two particle species with opposite charges, with vanishing dipole moment or spin, so that the fluid has vanishing magnetization and polarization. We find that the dynamics of this fluid changes dramatically in the presence of a magnetic field. The shear stress tensor no longer adheres to a single differential equation; instead, it splits into three non-degenerate components, each evolving according to distinct dynamical equations. Exploring these equations in a Bjorken flow scenario, we find that for large magnetic fields, our theory predicts oscillatory behavior beyond the scope of an Israel-Stewart-like theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.