Abstract

We present an analytical derivation of the transport coefficients of a relativistic gas in (2+1) dimensions for both Chapman-Enskog (CE) asymptotics and Grad's expansion methods. We further develop a systematic calibration method, connecting the relaxation time of relativistic kinetic theory to the transport parameters of the associated dissipative hydrodynamic equations. Comparison of our analytical results and numerical simulations shows that the CE method correctly captures dissipative effects, while Grad's method does not, in agreement with previous analyses performed in the (3+1)-dimensional case. These results provide a solid basis for accurately calibrated computational studies of relativistic dissipative flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.