Abstract
We present a way to derive a deformation of special relativistic kinematics (possible low energy signal of a quantum theory of gravity) from the geometry of a maximally symmetric curved momentum space. The deformed kinematics is fixed (up to change of coordinates in the momentum variables) by the algebra of isometries of the metric in momentum space. In particular, the well-known example of $\kappa$-Poincar\'e kinematics is obtained when one considers an isotropic metric in de Sitter momentum space such that translations are a subgroup of the isometry group, and for a Lorentz covariant algebra one gets the also well-known case of Snyder kinematics. We prove that our construction gives generically a relativistic kinematics and explain how it relates to previous attempts of connecting a deformed kinematics with a geometry in momentum space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review D
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.