Abstract
Although special relativity and quantum mechanics revolutionised physics in the early 20th century, the consequences of combining these two theories are still being explored a hundred years later, usually using the formidable theoretical machinery of quantum field theory. However, a formalism accessible to undergraduates has been recently developed which shows how the centre of mass and internal dynamics of classical and quantum systems is relativistically coupled with interesting consequences. Here we explore some of the implications of this coupling, first classically, where we find that the dynamics of the system is time dilated when moving relative to another inertial frame. We then apply the dynamics to a quantum 2-level atom bound in a one-dimensional infinite potential well, and show that the coupling produces collapses and revivals in quantum interference. This example provides an illustration of how the combination of special relativity and quantum mechanics can be studied in situations familiar to most undergraduates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.