Abstract

Excitation energies, term designations, $g$ factors, transition rates, and lifetimes of ${\mathrm{U}}^{2+}$ are determined using a relativistic configuration interaction (CI) + linearized-coupled-cluster (LCC) approach. The CI-LCC energies are compared with CI + many-body-perturbation-theory (MBPT) and available experimental energies. Close agreement has been found with experiment, within hundreds of ${\mathrm{cm}}^{\ensuremath{-}1}$. In addition, lifetimes of higher levels have been calculated for comparison with three experimentally measured lifetimes, and close agreement has been found within the experimental error. CI-LCC calculations constitute a benchmark test of the CI + all-order method in complex relativistic systems such as actinides and their ions with many valence electrons. The theory yields many energy levels, $g$ factors, transition rates, and lifetimes of ${\mathrm{U}}^{2+}$ that are not available from experiment. The theory can be applied to other multivalence atoms and ions, which would be of interest to many applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.