Abstract

Theoretical spectroscopy based on double perturbation theory is typically challenged by systems with large orbital hyperfine splitting. Therefore, we here derive a rigorous, non-perturbative scheme starting from Dirac’s equation which allows to calculate the contribution of the orbital HFI for complex structures including heavy atoms with strong spin-orbit coupling (SOC). Using the PAW formalism, the method has been implemented in the software package Quantum ESPRESSO. We show that the ‘orbital part’ actually scales with SOC strength if orbital quenching is hindered by low local symmetry, i.e. in case of dimers or atoms at surfaces. This holds true in particular when the unpaired electron is localized in quasi-atomic p-like orbitals. Here, the orbital part is by far not negligible, but becomes dominant by surpassing the dipolar contribution by a factor of five.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.