Abstract

The normalized elimination of the small component (NESC) theory, recently proposed by Filatov and Cremer, is extended to include magnetic interactions and applied to the calculation of the nuclear magnetic shielding in HX (X=F, Cl, Br, I) systems. The NESC calculations are performed at the levels of the zeroth-order regular approximation (ZORA) and the second-order regular approximation (SORA). The calculations show that the NESC-ZORA results are very close to the NESC-SORA results, except for the shielding of the I nucleus. Both the NESC-ZORA and NESC-SORA calculations yield very similar results to the previously reported values obtained using the relativistic infinite-order two-component coupled Hartree-Fock method. The difference between NESC-ZORA and NESC-SORA results is significant for the shieldings of iodine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.