Abstract

AbstractRelativistic modelling of rotational motion of extended bodies represents one of the most complicated problems of Applied Relativity. The relativistic reference systems of IAU (2000) give a suitable theoretical framework for such a modelling. Recent developments in the post-Newtonian theory of Earth rotation in the limit of rigidly rotating multipoles are reported below. All components of the theory are summarized and the results are demonstrated. The experience with the relativistic Earth rotation theory can be directly applied to model the rotational motion of other celestial bodies. The high-precision theories of rotation of the Moon, Mars and Mercury can be expected to be of interest in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.