Abstract

Abstract It is known that every relatively pseudocomplemented lattice is residuated and, moreover, it is distributive. Unfortunately, non-distributive lattices with a unary operation satisfying properties similar to relative pseudocomplementation cannot be converted in residuated ones. The aim of our paper is to introduce a more general concept of a relatively residuated lattice in such a way that also non-modular sectionally pseudocomplemented lattices are included. We derive several properties of relatively residuated lattices which are similar to those known for residuated ones and extend our results to posets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.