Abstract

We introduce and study relatively divisible and relatively flat objects in exact categories in the sense of Quillen. For every relative cotorsion pair [Formula: see text] in an exact category [Formula: see text], [Formula: see text] coincides with the class of relatively flat objects of [Formula: see text] for some relative projectively generated exact structure, while [Formula: see text] coincides with the class of relatively divisible objects of [Formula: see text] for some relative injectively cogenerated exact structure. We exhibit Galois connections between relative cotorsion pairs in exact categories, relative projectively generated exact structures and relative injectively cogenerated exact structures in additive categories. We establish closure properties and characterizations in terms of the approximation theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.