Abstract

Most clinical magnetoencephalography (MEG) centers record both MEG and EEG, but model only MEG sources. This may be related to the belief that MEG spikes are more prevalent, MEG is more sensitive, or to proprietary software limitations. Biophysics would contend, however, that EEG, being sensitive to radial and tangential source orientations, would provide complementary data for analysis. We recorded 306 channels of MEG and 25 channels of EEG simultaneously in 297 consecutive patients over 3 years. We inspected the MEG and EEG recordings separately, identified spikes in both, determined whether their voltage and/or magnetometer magnetic fields were dipolar and thus model-worthy, and segregated them into types based on similar and distinct field topography. We placed for each patient their spike types into categories, including those with both a recognizable MEG and EEG signal and those with only an MEG and only an EEG signal. Eighty-three percent of patients had spikes recorded, and these patients had an average of 2.7 spike types each. Fifty-six percent of spike types were present in both MEG and EEG. However, 36% of spike types were only evident in EEG, whereas 8% were noted in MEG alone. In 49% of patients with spikes, MEG review missed at least one spike type, whereas in 17% of patients, EEG review missed at least one spike type. To obtain an optimal yield of diagnostic information, EEG should also be subjected to source analysis in any clinical MEG study. EEG and MEG data are indeed complementary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call