Abstract
For an r-uniform hypergraph H and a family of r-uniform hypergraphs F, the relative Turán number ex(H,F) is the maximum number of edges in an F-free subgraph of H. In this paper we give lower bounds on ex(H,F) for certain families of hypergraph cycles F such as Berge cycles and loose cycles. In particular, if Cℓ3 denotes the set of all 3-uniform Berge ℓ-cycles and H is a 3-uniform hypergraph with maximum degree Δ, we proveex(H,C43)≥Δ−3/4−o(1)e(H),ex(H,C53)≥Δ−3/4−o(1)e(H), and these bounds are tight up to the o(1) term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.