Abstract

Research focused on female gamete vitrification has increased attention to develop a reliable cryopreservation method to preserve immature equine oocytes. Despite the intensive implementation of biotechnological procedures for horse breeding, vitrification of immature equine cumulus-oocyte complexes (COCs) remain to be clearly elucidated. We aimed to determine the relative transcript level of target genes Bone morphogenetic protein 15 (BMP15); Bcl-2-associated X protein (BAX); and Caspase 3 (CASP3) in equine COCs prior to and after vitrification. Ovarian follicles were aspirated from ovaries collected from an abattoir. A total of 240 COCs were collected and distributed into vitrified COCs (VIT, n=120) and non-vitrified (Non-VIT, n=120) groups. Then, COCs were preserved and relative transcript expressions of BMP15, BAX, CASP3 were measured and normalized against GAPDH performed by qRT-PCR. In addition, 38 COCs were evaluated to assess chromatin configuration of germinal vesicl e stage prior and after vitrification by exposure to 10 μg/ml of bisbenzimide. A difference was observed in the COCs’ mRNA level of abundance for the BAX gene between the VIT (2.05 ± 0.47) and (0.85 ± 0.08) Non-VIT groups. There was no difference in mRNA relative transcript level of CASP3 and BMP15 in Non-VIT (0.63 ± 0.20 and 1.55 ± 0.73, respectively) compared to VIT (0.64 ± 0.01 and 2.84 ± 2.20, respectively) equine COCs. All COCs where considered at immature stage of development even though COCs in Non-VIT group showed higher condensed chromatin configuration compared to VIT (100% vs 60.7%, respectively). We demonstrate that BMP15 and CASP3 are detected in VIT and Non-VIT immature COCs. In conclusion, BAX is expressed highly in vitrified immature equine COCs and indicates that activation of apoptosis signaling cascades in cells exposed to vitrification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.