Abstract
Relative timing (RT) is introduced as a method for asynchronous design. Timing requirements of a circuit are made explicit using relative timing. Timing can be directly added, removed, and optimized using this style. RT synthesis and verification are demonstrated on three example circuits, facilitating transformations from speed-independent circuits to burst-mode and pulse-mode circuits. Relative timing enables improved performance, area, power, and functional testability of up to a factor of 3/spl times/ in all three cases. This method is the foundation of optimized timed circuit designs used in an industrial test chip, and may be formalized and automated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.