Abstract

We give an overview of relative tensor products (RTPs) for von Neumann algebra modules. For background, we start with the categorical definition and go on to examine its algebraic formulation, which is applied to Morita equivalence and index. Then we consider the analytic construction, with particular emphasis on explaining why the RTP is not generally defined for every pair of vectors. We also look at recent work justifying a representation of RTPs as composition of unbounded operators, noting that these ideas work equally well for L^p modules. Finally, we prove some new results characterizing preclosedness of the map (\xi, \eta) \mapsto \xi \otimes_\phi \eta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.