Abstract
Salmonella enterica is not able to grow at water activity (aw) levels below 0.94, but it can survive in low-aw foods for long periods of time. Temperature, aw, substrate, and serotype affect its persistence. The aim of this study was to evaluate the influence of temperature and aw on the relative persistence among four serotypes of Salmonella enterica in low-aw whey protein powder. Whey protein powder was equilibrated to aws 0.18 ± 0.02 and 0.54 ± 0.03, inoculated with a cocktail of Salmonella serovars (Agona, Tennessee, Montevideo, and Typhimurium), vacuum sealed, and stored at 36°C for 6 months and at 70°C for 48 h. Presumptive Salmonella colonies (30 to 32) were randomly picked from each plate at the end of each survival study. PCR multiplex serotyping was used to identify the isolates. A multinomial mixed logistic model with Salmonella Tennessee as a reference was used to test for significant differences in frequency distribution of the surviving serotypes. Salmonella Tennessee and Salmonella Agona were the most prevalent surviving serotypes, followed in decreasing order by Salmonella Montevideo and Salmonella Typhimurium. Statistical analysis indicated that temperature (P = 0.003) and aw (P = 0.012) influenced the relative prevalence of the Salmonella serotypes. If other environmental conditions are equal, Salmonella Tennessee is better able to survive than Salmonella Montevideo and Salmonella Typhimurium at higher temperatures and higher aw levels in low-aw whey protein powder held at 36 and 70°C. The relative prevalence of Salmonella Agona to Salmonella Tennessee did not change with increasing temperature (P = 0.211) or aw (P = 0.453). These results should be considered in risk assessment and when developing predictive models for survival of Salmonella in low-aw foods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.