Abstract

1. Intracellular recording and stimulation techniques were used in anesthetized cats to study the interrelations between amplitudes of PSPs produced by electrical stimulation of several short-latency pathways to MG alpha motoneurons and the mechanical properties of muscle units innervated by the same cells. Motor-unit types were identified by muscle-unit properties.2. The maximum amplitudes of monosynaptic EPSPs produced in MG motoneurons by activation of homonymous (MG) and heteronymous (LGS) group Ia afferents were clearly related to motor-unit type, being, on the average, largest in type S units, somewhat smaller in type FR and F(int) units, and smallest in type FF units. Correspondingly, group Ia EPSP amplitudes were inversely correlated with muscle-unit tension production and directly correlated with resistance to fatigue. The same input distribution was true for disynaptic IPSPs produced by group Ia afferents from antagonist ankle flexors.3. The amplitudes of monosynaptic EPSPs produced by fibers descending in the ipsilateral ventral funiculi of the low thoracic cord were not clearly related to MG motor-unit type or (therefore) to muscle-unit properties.4. A quantitative input-output model of the MG motor-unit pool, based in part on the present results, suggests that overall characteristics of MG motor units, and their relative numbers in the MG pool, reflect functional specializations determined by specific mechanical demands placed on the MG muscle by the usual motor behavior of the animal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.