Abstract

Binding energies of negative ($X^-$) and positive trions ($X^+$) in quantum wires are studied for strong quantum confinement of carriers which results in a numerical exactly solvable model. The relative electron and hole localization has a strong effect on the stability of trions. For equal hole and electron confinement, $X^+$ is more stable but a small imbalance of the particle localization towards a stronger hole localization e.g. due to its larger effective mass, leads to the interchange of $X^-$ and $X^+$ recombination lines in the photoluminescent spectrum as was recently observed experimentally. In case of larger $X^-$ stability, a magnetic field oriented parallel to the wire axis leads to a stronger increase of the $X^+$ binding energy resulting in a crossing of the $X^+$ and $X^-$ lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.