Abstract
The study of geochemical transformations undergone by ‘biological markers’ after their incorporation into sediments is an important field of organic geochemistry. Combined with laboratory simulation experiments, molecular mechanics calculations have been shown to be very useful to establish the reaction pathways, and to predict intermediate components and stable reaction end products, especially in the case of the acid-catalyzed isomerization reactions of steroid and terpenoid hydrocarbons. Many commercially available softwares are able to optimize (minimize) the geometries of molecules and compute some of their thermodynamical data with either molecular mechanics (MM) or semi-empirical methods of quantum chemistry. In order to verify the reliability of these methods, we have computed the relative thermodynamic stabilities of a large number of steradiene isomers with MM3 (Tripos Inc.), MM+ (HYPERCHEMTM) and MM2 (Chem3D, CambridgeSoft Corp.) empirical force fields, and with AM1 and PM3 (HYPERCHEMTM) semi-empirical methods. The calculation results of thermodynamic stabilities of steradiene isomers are used to explain the compounds produced by the rearrangement of cholesta-3,5-diene when treated with p-toluenesulfonic acid in acetic acid at 70°C. The end products, namely the spirosteradienes 7–8, obtained by this treatment are the most stable steradiene isomers according to all computational methods. The relative thermodynamic stabilities of cholestadienes are also consistent with the mechanism postulated for the spirosteradiene formation proceeding through a pathway including cholestadienes 2–6 as intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.