Abstract

Abstract: A combined experimental–numerical approach was utilized to characterize the relative slip along the contact surface and its features under the partial slip fretting fatigue condition. Relative displacements at two locations on the substrate (specimen) and fretting pad were measured in fretting fatigue tests. These measurements were then utilized to validate finite element analysis. Effects of the coefficient of friction on the relative slip and contact condition were investigated. The stress state along the contact surface was also investigated. Two contact geometries were analysed: cylinder‐on‐flat and flat‐on‐flat. There was no change in relative displacement between locations away from the contact surface because of the change in the coefficient of friction, while relative slip on the contact surface was affected by coefficient of friction. In addition, stick/slip sizes were affected by the change in coefficient of friction. Comparison between present and previous finite element models showed that stress state, as well as a critical plane‐based crack‐initiation parameter, was not much different between these approaches, while relative slip on the contact surface changed considerably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.