Abstract

Flow induced by rotating bodies is studied from the viewpoint of the shear of liquid particles. By solution of the boundary layer equations for Newtonian and power-law non-Newtonian liquids at a rotating disc, a typical velocity field was obtained. The shear distribution of particles leaving the disc edge shows that the most important deformation occurs in the boundary layer. Distribution of shear from the viewpoint of the volume flow rate is also presented. Application of the results to the prediction of particle-breakup dynamics at rotating impellers is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call