Abstract

In this paper, first we show that the invariant bilinear form in a quadratic Lie-Yamaguti algebra induces an isomorphism between the adjoint representation and the coadjoint representation. Then we introduce the notions of relative Rota-Baxter operators on Lie-Yamaguti algebras and pre-Lie-Yamaguti algebras. We prove that a pre-Lie-Yamaguti algebra gives rise to a Lie-Yamaguti algebra naturally and a relative Rota-Baxter operator induces a pre-Lie-Yamaguti algebra. Finally, we study symplectic structures on Lie-Yamaguti algebra, which give rise to relative Rota-Baxter operators as well as pre-Lie-Yamaguti algebras. As applications, we study phase spaces of Lie-Yamaguti algebras, and show that there is a one-to-one correspondence between phase spaces of Lie-Yamaguti algebras and Manin triples of pre-Lie-Yamaguti algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.