Abstract

AbstractRelative roles of anthropogenic aerosols (AAs) and greenhouse gases (GHGs) in land and oceanic monsoon changes during boreal summer over the period 1850–2005 in Coupled Model Intercomparison Project Phase 5 (CMIP5) models are explored. It is found that the GHG effect dominates rainfall trend over oceanic monsoon region. As a result, precipitation over western North Pacific (WNP) monsoon region and Intertropical Convergence Zone (ITCZ) over tropical eastern Pacific are strengthened through the so‐called “richest‐get‐richer” mechanism. Over land monsoon region, GHG and AA effects are different over India and East Asia (EA). The two effects tend to offset each other over India, but the AA effect dominates over EA and induces a drying trend. The weakened effect of GHGs on EA is attributed to the large offset of thermodynamic and dynamic effects associated with GHGs. While the former tends to strengthen EA rainfall through increased moisture, the latter tends to decrease EA rainfall due to the strengthened WNP monsoon impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.