Abstract

As a follow-up to the work of Chen and Huang [S.-H. Chen, Y.-C. Huang, Risk preference, forecasting accuracy and survival dynamics: simulations based on a multi-asset agent-based artificial stock market, Working Paper Series 2004-1, AI-ECON Research Center, National Chengchi University, 2004; S.-H. Chen, Y.-C. Huang, Risk preference and survival dynamics, in: T. Terano, H. Kita, T. Kaneda, K. Arai, H. Deghchi (Eds.), Agent-Based Simulation: From Modeling Methodologies to Real-World Applications, Springer Series on Agent-Based Social Systems, vol. 1, 2005, pp. 135–143], this paper continues to explore the relationship between wealth share dynamics and risk preferences in the context of an agent-based multi-asset artificial stock market. We simulate a multi-asset agent-based artificial stock market composed of heterogeneous agents with different degrees of relative risk aversion. As before, we find that the difference in risk aversion and the resultant saving behavior are the primary forces in determining the survivability of agents. In addition to the stability of the saving behavior, the level of the saving rate also plays a crucial role. The agents with stable saving behavior, e.g., the log-utility agents, may still become extinct because of their low saving rates, whereas the agents with unstable saving behavior may survive because of their high saving rates, implied by their highly risk-averse preferences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.