Abstract

The rate constants for the reaction of acetone (kH) and d6-acetone (kD) with OH radicals have been measured at atmospheric pressure over a range of temperatures by a relative rate method by using on-line mass spectrometry. The following Arrhenius expressions have been determined for these reactions (in units of cm(3) molecule(-1) s(-1)): k(H)(T) = (9.8 x 10(-13)) exp[-(484 +/- 44)/T] between 253 and 373 K, and kD(T) = (4.0 x 10(-13)) exp[-(755 +/- 89)/T] between 293 and 373 K. This is the first study to investigate the temperature dependence of kH and kD by using a relative rate method and confirms previous rate constants determined by absolute methods. Agreement of our rate constants with those determined in the absence of water suggests that the presence of water vapor has a minimal effect on the kinetics of this reaction under the conditions of our study. The observed kinetic isotope effect (kH/kD = 5.6 +/- 0.4 at 293 K) is evidence that H-atom abstraction occurs in the mechanism. The acetic acid yields of the reaction of OH with acetone and d6-acetone were also investigated by on-line mass spectrometry. Acetic acid yields show a negative temperature dependence that decreases from 0.12 at 273 K to 0.05 at 353 K. The yields of d3-acetic acid decrease from 0.20 at 283 K to 0.13 at 323 K. Kinetic modeling of our data suggests that 50-70% of the observed acetic acid in our system may be due to secondary reactions involving acetonoxy and HOx radical reactions. However, secondary chemistry cannot easily explain the observed formation of d3-acetic acid in the deuterated system, where about 90% of the observed d3-acetic acid is likely due to an OH-addition mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.