Abstract
The optical remote sensors carried by the Jilin-1 KF02 series satellites have an imaging resolution better than 0.5 m and a width of 150 km. There are radiometric problems, such as stripe noise, vignetting, and inter-slice chromatic aberration, in their raw images. In this paper, a relative radiometric correction method based on temperature normalization is proposed for the response characteristics of sensors and the structural characteristics of optical splicing of Jilin-1 KF02 series satellites cameras. Firstly, a model of temperature effect on sensor output is established to correct the variation of sensor response output digital number (DN) caused by temperature variation during imaging process, and the image is normalized to a uniform temperature reference. Then, the horizontal stripe noise of the image is eliminated by using the sensor scan line and dark pixel information, and the vertical stripe noise of the image is eliminated by using the method of on-orbit histogram statistics. Finally, the method of superposition compensation is used to correct the vignetting area at the edge of the image due to the lack of energy information received by the sensor so as to ensure the consistency of the image in color and image quality. The proposed method is verified by Jilin-1 KF02A on-orbit images. Experimental results show that the image response is uniform, the color is consistent, the average Streak Metrics (SM) is better than 0.1%, Root-Mean-Square Deviation of the Mean Line (RA) and Generalized Noise (GN) are better than 2%, Relative Average Spectral Error (RASE) and Relative Average Spectral Error (ERGAS) are greatly improved, which are better than 5% and 13, respectively, and the relative radiation quality is obviously improved after relative radiation correction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.