Abstract

A deuterium reagent, 1-(d5) phenyl-3-methyl-5-pyrazolone (d5-PMP), has been synthesized and used for relative quantitative analysis of oligosaccharides by mass spectrometry (MS) using d0/d5-PMP stable isotopic labeling. Previously reported permethylation-based isotopic labels generate variable mass differences, and reductive amination-based isotopic labels cause a loss of some acid-labile groups in carbohydrates. In contrast, d0/d5-PMP stable isotopic labeling is performed at the reducing end of glycans under basic conditions without desialylation, and the mass difference (Δm=10Da) between the heavy form (d5-PMP derivative) and light form (d0-PMP derivative) of each glycan is invariable. When the two derivative forms of a glycan are mixed in equimolar amounts, a pair of peaks with a 10-Da mass differences is observed in the MS profile. The difference at relative intensity between the d0- and d5-PMP derivatives reflects the difference in quantity of glycans in two samples, making it possible to carry out both qualitative and relative quantitative analyses of glycans in glycomic studies. Application of this method on DP2 to DP6 maltodextrin oligosaccharides and N-linked glycans released from ribonuclease B and bovine fetuin demonstrates a 10-fold relative quantitative dynamic range, a satisfying reproducibility (coefficient of variation [CV]⩽8.34%), and good accuracy (relative error [RE]⩽5.1%) of the method. The suggested technique has been successfully applied for comparative quantitative analysis of free oligosaccharides in human and bovine milk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call